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Anaerobic Oxidation of Methane as Enzymatically Catalyzed System.
The anaerobic oxidation of methane (AOM) is presently un-
derstood as two stoichiometrically coupled enzymatic net reaction
sequences: methane oxidation, which may essentially represent
a reversal of methanogenesis, and dissimilatory sulfate reduction.
The involved enzymatic net reactions in a steady state (no change
of cellular pools) must take place at the same net rate (Fig. S1,
full black arrows) according to the 1:1 stoichiometry CH4 +
SO4

2− → HCO3
− + HS− + H2O. In contrast, the extent of

forward and back fluxes between enzymatic net reactions can
differ. If the product is isotopically labeled, the label migrates
upstream (arrows and ↽) through the intermediate pools. Label
concentration in an intermediate decreases with its distance
from the product pool. Hence, label back flux through an in-
dividual reaction must be greater than the revealed total cat-
abolic back flux.

Time Course Experiment with Consortia from Hydrate Ridge. The
results from the time course experiment with highly enriched,
detritus-free consortia from Hydrate Ridge are depicted in
Fig. S2.

Calculation of the Reverse Reaction Rate. In the catabolic reversible
conversion of a substrate to a product, A ⇌ P, the forward and
back flux (Discussion and Fig. S3) are f+ and f− (moles volume−1

time−1). When product label, P*, is added, appearance of A*
reveals the back flux. If the label is a radioisotope with noticeable
decay, error in label quantification is avoided by measuring ra-
dioactivity in all samples at the same time after the experiment;
the specific isotope decay rate is independent of the chemical
composition. The infinitesimal concentration d[A*] formed dur-
ing an infinitesimal time span dt depends on f+ and f−, heavy
isotope discrimination in each direction (factors, α−, α+ ≥1), and
the proportion of label in total product and substrate (brackets
indicate concentrations) (Eq. S1):

d½A�� ¼ f− dt
1
α−

½P��
½P� − fþdt

1
αþ

½A��
½A� : [S1]

Treatment is simplified by assuming α−, α+ ∼ 1 and that the label
proportion in the reactant pool remains very low ([A*]/[A] <<
[P*]/[P]), and therefore, return by f+ can be neglected. Eq. S1
then yields (Eq. S2)

d½A�� ¼ f− dt
½P��
½P� : [S2]

P* is increasingly diluted by steadily forming unlabeled P (Fig.
S3). If an increase Δ[A*] is measured after a short enough in-
cubation time, Δt, during which [P*]/[P] remains essentially
constant, Eq. S2 can be simplified and rearranged to (Eq. S3)

f− ¼ Δ½A��
Δt

½P�
½P��0

¼ Δ½A��
Δt

½P�0 þ ½P��0
½P��0

: [S3]

[P]0 is the initial product concentration, and [P*]0 is the initial
label concentration. If [P*]0 << [P]0, Eq. S3 is further simplified
to (Eq. S4)

f− ¼ Δ½A��
Δt

½P�0
½P��0

: [S4]

Such treatment is similar as the common determination of sub-
strate fluxes in habitats through labeling and measuring product
label (1, 2). We applied Eq. S4, which corresponds to Eq. 15
(Materials and Methods), to evaluate 14C back fluxes in the
methane–bicarbonate system.
If, however, label dilution is significant, which it was with the

product sulfide, [P] in Eq. S2 is expressed as a function of time.
We assume that the net rate, v, of A → P is largely independent
of [A] (zero-order behavior, which is common in many microbial
batch incubations) and that cell growth is negligible during in-
cubation. Then, v is constant, and product increases according
to [P] = [P]0 + [P*]0 + vt or with [P*]0 << [P]0 according to
(Eq. S5)

½P� ¼ ½P�0 þ vt: [S5]

The needed variable [A*] (Eq. S2) is introduced through [P*] =
[P*]0 − [A*] (mass conservation) leading to (Eq. S6)

1
½P��0 − ½A�� d½A

�� ¼ f−
1

vtþ ½P�0
dt: [S6]

Integration with [A*] = 0 at t = 0 yields (Eq. S7)

ln
½P��0

½P��0 − ½A�� ¼
f−
v
ln
½P�0 þ vt
½P�0

[S7]

or (Eq. S5) with resubstitution (Eq. S8)

ln
½P��0

½P��0 − ½A�� ¼
f−
v
ln

½P�
½P�0

: [S8]

Experimental data displayed in a plot of the left vs. the right
argument (Fig. 1C, Eq. 16, and Fig. S2C) are, thus, expected to
follow a straight-line fit with the slope f−/v.
In the absence of a net reaction (v = 0), direct application of

Eqs. S7 and S8 is meaningless. Rather, Eq. S6 must be applied
with v = 0. Integration yields (Eq. S9)

ln
½P��0

½P��0 − ½A�� ¼ f−
t

½P�0
[S9]

for obtaining f− (=f+) through a graphic plot, again only as
long as label return [A*] → [P*] is negligible. Solving Eq. S9
for [A*] = [A*](t) shows the saturating function, [A*] = [P*]0
(1 − e− ðf− =½P�0Þt), again valid as long as label return [A*] → [P*]
is insignificant.
For proof of consistency, Eq. S9 is also derived by transforming

the right side of Eq. S7 according to (Eq. S10)

ln
�
1þ vt

½P�0

�f−
v

¼ ln
�
1þ 1

½P�0=vt
�½P�0

vt ·
vt

½P�0
·f−v
¼ ln

�
1þ 1

½P�0=vt
�½P�0

vt ·
t f−
½P�0

:

[S10]

Then, the limit of the argument is formed for v→ 0, which is [P]0/
(vt) → ∞(Eq. S11):
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lim
½P�0=ðvtÞ→∞

�
1þ 1

½P�0=vt
�½P�0

vt ·
t f−
½P�0 ¼ e

t f−
½P�0 : [S11]

With this equation, Eq. S7 is written as (Eq. S12)

ln
½P��0

½P��0 − ½A�� ¼ ln e
t f−
½P�0 ¼ f−

t
½P�0

; [S12]

which is identical to Eq. S9.

Thermodynamics and Kinetics in Catabolism. Actual free energy,
standard free energy, and equilibrium constant. We consider the re-
action (S13)

aA þ bB→ pPþ qQ; [S13]

where A and B are reactants and P andQ are products. Symbols a,
b, p, and q are stoichiometric factors. The free energy of this
reaction depends on activities (Eq. S14):

ΔG ¼ ΔG8þ RTln
fPgpfQgq
fAgafBgb

: [S14]

At equilibrium, ΔG = 0, and therefore (Eq. S15),

ΔG8 ¼ −RT ln

 
fPgpfQgq
fAgafBgb

!
e

¼ −RT lnKe; [S15]

with index e indicating activity at equilibrium. Eq. S15 can be
rewritten as (Eq. S16)

Ke ¼ e−ΔG8=ðRTÞ ¼ 10−ΔG8=ðRT ln 10Þ; [S16]

with R = 8.314 J K−1 mol−1 = 8.314 · 10−3 kJ K−1 mol−1 and ln
10 = 2.303.
Actual concentrations, equilibrium constant, and actual free energy. For
convenience, we now consider a reaction with only one reactant
and one product (S17):

A→P: [S17]

The free energy of this reaction is (Eq. S18)

ΔG ¼ ΔG8þ RT ln
fPg
fAg; [S18]

which can be divided by −RT (Eq. S19):

−ΔG
RT

¼ −ΔG8

RT
þ ln

fAg
fPg : [S19]

Eq. S19 is brought to an exponential form (Eq. S20),

e−ΔG=ðRTÞ ¼ e−ΔG8=ðRTÞþlnfAg=fBg; [S20]

which is the same as (Eq. S21)

e−ΔG=ðRTÞ ¼ e−ΔG8=ðRTÞfAg
fPg : [S21]

Using Eq. S16 introduces Ke in Eq. S21, yielding (Eq. S22)

e−ΔG=ðRTÞ ¼ Ke
fAg
fPg [S22]

or (Eq. S23)

eΔG=ðRTÞ ¼ fPg
KefAg: [S23]

With activities ∼ concentrations and the connection between the
equilibrium constant and the four enzymatic rate constants, Ke =
k+1 k+2/(k−1 k−2), explained in SI Text, Thermodynamics and
Kinetics in Catabolism, Kinetic rate constants, equilibrium, and
Haldane relationship, we obtain (Eq. S24)

eΔG=ðRTÞ ¼ ½P�
Ke½A� ¼

k−1k−2½P�
kþ1kþ2½A�; [S24]

which is used in Eq. 8 in the text (Discussion).
Kinetic rate constants, equilibrium, and Haldane relationship. We con-
sider reaction S17 as being enzymatically catalyzed, with E in-
dicating the enzyme and EA indicating the enzyme–substrate
complex (Fig. S4).
Equilibrium conditions (no net reactions and index e indicating

equilibrium) are characterized by the equalities (Eq. S25)

kþ1½E�e½A�e ¼ k−1½EA�e [S25]

and (Eq. S26)

k− 2½E�e½P�e ¼ kþ2½EA�e: [S26]

Division of Eq. S25 by Eq. S26 eliminates [E]e and [EA]e (Eq.
S27):

kþ1½A�e
k−2½P�e

¼ k−1
kþ2

: [S27]

Assuming numerical equality between thermodynamic equilib-
rium constant (Eqs. S15 and S16) and [P]e/[A]e yields (Eq. S28)

kþ1kþ2

k−1k−2
¼ ½P�e

½A�e
¼ Ke: [S28]

Strictly speaking, activity coefficients would have to be included.
The nominator and denominator are then multiplied with (k−1 +
k+2) (Eq. S29):

kþ1kþ2ðk−1þkþ2Þ
k−1k−2ðk−1þkþ2Þ ¼ kþ2ðk−1þkþ2Þ=k−2

k−1ðk−1þkþ2Þ=kþ1
¼ ½P�e

½A�e
: [S29]

With (k−1 + k+2)/k−2 = Km− and (k−1 + k+2)/k+1 = Km+, the
Michaelis constants of the back and forward reaction, and k+2 =
kcat+ and k−1 = kcat− (catalytic constants for product and sub-
strate formation, respectively), Eq. S29 is written as (Eq. S30)

kcatþKm−

kcat−Kmþ
¼ kcatþ=Kmþ

kcat− =Km−
¼ ½P�e

½A�e
; [S30]

which is the Haldane relationship. This relationship is usually
derived in a different manner by applying the equation for the net
rate, v, of a reversible reaction and setting v = 0 (3, 4).
Forward and back flux resulting from enzymatic binding and release
reactions. We consider a reaction where substrate and product
are distinguishable by labeling at the start of the reaction
according to Fig. S5.
The enzyme–substrate complex is partly derived from the

starting unlabeled substrate designated as A• and partly from the
starting labeled product designated as P*. Within a very short
time span, newly formed A* and P• are diluted in the pools of A•

and P*, respectively, and therefore, return to the side of origin
can be neglected. Assuming a steady state with constant con-
centrations of enzyme–substrate complex, the rate of formation
of EA• equals the rates of its decomposition. Decomposition to
A• and P• occurs stochastically to both sides, the velocities de-
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pending on the proportion of EA• among total enzyme–substrate
complex, EA• + EA* (Eq. S31):

vþ1 ¼ v−1
½EA•�

½EA•� þ ½EA�� þ vþ2
½EA•�

½EA•� þ ½EA��: [S31]

Eq. S31 is rearranged to (Eq. S32)

vþ1

v−1 þ vþ2
¼ ½EA•�

½EA•� þ ½EA��: [S32]

Partition of the flux f+ in v+2 equals partition of EA• in EA• +
EA* (Eq. S33):

fþ
vþ2

¼ ½EA•�
½EA•� þ ½EA��: [S33]

Eq. S33 is expressed with Eq. S32 as (Eq. S34)

fþ
vþ2

¼ vþ1

v−1 þ vþ2
: [S34]

Because of steady state, v−1 + v+2 = v+1 + v−2 (formation of
total complex occurs at the same rate as its decomposition), Eq.
S34 can be converted to (Eq. S35)

fþ ¼ vþ1vþ2

vþ1 þ v− 2
: [S35]

An analogous calculation with EP* and f− yields (Eq. S36)

f− ¼ v− 1v−2
vþ1 þ v−2

: [S36]

Forward and back flux expressed by rate constants of an enzyme. The
rates in Eq. S35 can be expressed by the corresponding rate
constants (Fig. S4) and concentrations of the respective species.
Furthermore, [EA•] + [EA*] = [EA] (total enzyme–substrate
complex), and therefore, Eq. S35 yields (Eq. S37)

fþ ¼ kþ1½A•�kþ2½EA�
kþ1½A•� þ k−2½P��: [S37]

In an analogous manner, Eq. S36 yields (Eq. S38)

f− ¼ k− 1½EA�k−2½P��
kþ1½A•� þ k−2½P��: [S38]

Because these fluxes also occur (unnoticed) if there is no label, the
signs (* and •) used for initial distinction can be omitted. The
ratio f−/f+ is then written as (Eq. S39)

f−
fþ

¼ k−1k−2½P�
kþ1kþ2½A�; [S39]

which according to Eq. S28, is (Eq. S40)

f−
fþ

¼ ½P�
Ke½A�: [S40]

This equation and Eq. S24 yield Eq. 9 in the text (Discussion).
Back flux f− can be also related to the net rate (v = f+ − f−) by
substituting f+ = v + f− (Eq. S41):

f−
v

¼ 1
Ke½A�=½P�− 1

ðfor v≠ 0; ½A�=½P�≠ 1=KeÞ: [S41]

To express f+ and f− by the concentration of total enzyme, [E0] =
[E] + [EA], the steady-state equation depicted in Fig. S5 is
formulated in the common manner (3) (Eq. S42):

kþ1½E�½A•� þ k−2½E�½P�� ¼ k−1½EA� þ kþ2½EA� [S42]

leading to (Eq. S43)

½E�ðkþ1½A•� þ k−2½P��Þ ¼ ðk−1 þ kþ2Þ½EA�: [S43]

Again, omitting label sign included for initial distinction,
substituting [E] = [E0] − [EA], and solving for [EA] yields
(Eq. S44)

�
EA
�¼ ðkþ1½A� þ k− 2½P�Þ½E0�

k− 1 þ kþ2 þ kþ1½A� þ k− 2½P�: [S44]

Expressing [EA] in Eq. S37 by Eq. S44 yields for the forward flux
(Eq. S45)

fþ ¼ kþ1½A� kþ2½E0�
k− 1þ kþ2 þ kþ1½A� þ k− 2½P�: [S45]

Multiplying nominator and denominator by (k−1 + k+2)/k+1k−2
introduces two composite constants (k−1 + k+2)/k+1 = Km+ and
(k−1 + k+2)/k−2 = Km−, the Michaelis constants for the forward
and reverse reactions, respectively (Eq. S46):

fþ ¼ Km− ½A�kþ2½E0�
KmþKm− þKm− ½A� þKmþ½P�: [S46]

Enzyme kinetics often use k+2 = kcat+, the catalytic constant (3)
for the forward reaction, and k+2[E0] = kcat+ [E0] = vmax+, the
maximum forward rate that would be achieved under saturation
(that is when totally added enzyme, E0, is present as enzyme
substrate complex and when there is no product causing reverse
reaction). Forward flux is thus also expressed as

fþ ¼ vmaxþKm− ½A�
KmþKm− þKm− ½A� þKmþ½P�: [S47]

In an analogous manner we express [EA] in Eq. S38 by Eq. S44,
multiply nominator and denominator by (k−1 + k+2)/k+1k−2, and
substitute k−1[E0] = kcat−[E0] = vmax− (maximum back rate, i.e.
with all enzyme present as EA, bound A being product-derived,
and free reactant A absent). This leads to the back flux (Eq. S48)

f−¼ vmax−Kmþ½P�
KmþKm− þKm− ½A� þKmþ½P�: [S48]

For proof of consistency, the net rate can be formed by v = f+ − f−
using Eqs. S47 and S48. This rate yields (Eq. S49)

v ¼ vmaxþKm− ½A�− vmax−Kmþ½P�
KmþKm− þKm− ½A� þKmþ½P�; [S49]

the classic rate equation of a reversible enzyme reaction with
one substrate and one product (3, 4). As long as there is no
product (that is [P] = 0) and thus, no back reaction, Eq. S49
yields (Eq. S50)

v ¼ vmaxþ½A�
Kmþþ½A�; [S50]

the well-known rate equation for a unidirectional enzymatic
reaction, A → P.
Temperature dependency of reversibility. Below, we present an ab-
breviated derivation of the van ’t Hoff isobar (Vukancic–Vukovic
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equation) of the equilibrium constant (full treatment of the topic
is in textbooks of physical chemistry).
At constant pressure, the change of the free energy of the

reacting system (reactants and products) with temperature
is related to the corresponding entropy, as is expressed by
(Eq. S51): �

∂
∂T

ΔG
�
p
¼ −ΔS: [S51]

ΔS is expressed by the free energy definition ΔG= ΔH – T ΔS as
ΔS = (ΔH – ΔG)/T, and therefore (Eq. S52),

�
∂
∂T

ΔG
�
p
¼ −

ΔH −ΔG
T

[S52]

or (Eq. S53) �
∂
∂T

ΔG
�
p
−
ΔG
T

¼ −
ΔH
T

: [S53]

Combining the left terms above (one denominator) and dividing
by T yields (Eq. S54)�

∂
∂T

ΔG
�
p
T −ΔG

T2 ¼ −
ΔH
T2 : [S54]

The left side is recognized as the derivative of a quotient if the
equation is written as (Eq. S55)�

∂
∂T

ΔG
�
p
T − 1 ΔG

T2 ¼

�
∂
∂T

ΔG
�
p
T −

�
∂
∂T

T
�
ΔG

T2 ¼ −
ΔH
T2 ;

[S55]

and therefore, the equation is identical with (Eq. S56)

�
∂
∂T

ΔG
T

�
p
¼ −ΔH

T2 : [S56]

This equation allows us (on integration) to calculate the quo-
tient ΔG2/T2 at a temperature T2 from the quotient ΔG1/T1

given for another temperature T1 and hence, also ΔG2 from
a ΔG1 value. However, there is usually more practical interest
in the influence of temperature on the equilibrium constant
than on the free energy itself. This preference is accounted
for in van ’t Hoff’s isobar of the equilibrium constant, obtained
from Eq. S56 with ΔG° = −RTlnKe, where superscript ° in-
dicates standard activities (whereas the temperature can be
fixed at any value) (Eq. S57):

�
∂
∂T

lnKe

�
p
¼ ΔH8

RT2 [S57]

1. Sorokin YI (1962) Experimental investigation of bacterial sulfate reduction in the Black
Sea using S35. Microbiology 31:329e335.

2. Jørgensen BB (1978) A comparison of methods for the quantification of bacterial
sulfate reduction in coastal marine sediments. 1. Measurement with radiotracer
techniques. Geomicrobiol J 1:11e27.

3. Bisswanger H (2008) Enzyme Kinetics: Principles and Methods (Wiley, New York).
4. Cornish-Bowden A (2004) Fundamentals of Enzyme Kinetics (Portland Press, London).
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Fig. S1. Schematic illustration of forward flux (⇀), back flux (↽), and net rate (→) during AOM (with m and n enzymatic steps for methane oxidation and
sulfate reduction, respectively); without attribution of organisms and mechanisms. SO4

2− enters the cell through an uptake system (U), whereas CH4, CO2, and
H2S are assumed to diffuse rapidly through the cytoplasmic membrane (M) and other layers. 〈C〉 and 〈S〉 are assumed to be carbon and sulfur intermediates,
respectively. Coreactants (such as coenzymes) and coupling between oxidation and reduction (transfer of reducing equivalents) are not depicted. The rates are
indicated by the lengths and directions of the arrows (1D vectors). A dynamic steady state (time constant intermediate pools) inside the cell is assumed. In the
assumed linear pathways, the net rate is the same for every reaction, whereas the forward and reverse fluxes can differ.
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Fig. S2. Time course experiment: addition of labeled sulfide (product) to highly enriched, detritus-free consortia from Hydrate Ridge that perform AOM. (A)
Developing sulfide concentrations in the presence (•) and absence (○) of methane. (B) Development of 35S-activity in the sulfate pool during incubation with
(▲) and without (△) methane as electron donor. The total 35S-activity (◆; sulfate + sulfide) is also indicated. The shown radiolabel was determined after
incubation at the same time to eliminate the effect of decay. (C) Double logarithmic plot according to Eq. 16 to calculate the reverse rate; dotted line marks the
95% confidence interval.
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Fig. S4. Simple enzymatic reaction with lumped state (EA) of enzyme-bound substrate.
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Fig. S5. Simple enzymatic reaction with lumped state (EA) of enzyme-bound substrate. For real or theoretical distinction, the product pool is labeled (P*). The
label gradually appears in the substrate pool that was originally unlabeled (A•).
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Table S1. Results from incubation experiments with AOM enrichment cultures with 14C and 35S-label

AOM rate (μmol mL−1 d−1; tracer
conversion 14CH4 → 14CO2)

+ Methane + sulfate

SR rate (μmol mL−1 d−1; tracer
conversion 35SO4

2– → H2
35S)

+ Methane + sulfate

MG rate (μmol mL−1 d−1; tracer conversion
14CO2 → 14CH4)

Enrichment culture AOM/SR + Methane + sulfate + Methane − sulfate

Hydrate Ridge 68.0 ± 2.8 70.6 ± 14.5 0.96/1 2.2 ± 0.1 1.6 ± 0.2
Relative to AOM rate (%) 100 103.8 3.2 2.4

Isis Mud Volcano 47.0 ± 6.4 44.0 ± 5.7 1.07/1 2.6 ± 0.2 1.1 ± 0.3
Relative to AOM rate (%) 100 93.7 5.5 2.3

Results are illustrated in Fig. 2. AOM, anaerobic oxidation of methane; MG, methanogenesis; SR, sulfate reduction.

Table S2. Net sulfate reduction rate and tracer-based calculated reverse reaction during incubation of AOM enrichment cultures

SR rate (μmol mL−1 d−1; quantified
chemically)

Reverse SR rate (% of SR; tracer conversion
H2

35S → 35SO4
2–)*

Enrichment culture + Methane − Methane + Methane − Methane

Hydrate Ridge 0.12 0.002
Relative to SR rate (%) 100 1.6 7 ± 1 nd

Isis Mud Volcano 0.19 0.009
Relative to SR rate (%) 100 4.7 13 ± 1 nd

Rates shown in Tables S1 and S2 are different, because Table S1 was an experiment using the entire biomass (short time, only starting and endpoint
measurements), whereas Table S2 was a long-time batch experiment in a time series (Materials and Methods). Results are illustrated in Fig. 2, and derivation of
the data is depicted in Fig. 1 and Fig. S2. SR, sulfate reduction.
*Directly determined with Eq. 16.

Table S3. Description of terms, fluxes, rates, labels, and pools

Symbol Description Units

A Substrate mol·L−1

P Product mol·L−1

A• Unlabeled substrate mol·L−1

P* Labeled product mol·L−1

A* Substrate derived by back flux from labeled product (P*) mol·L−1

P• Unlabeled product derived by forward flux from unlabeled substrate (A•) mol·L−1

E Enzyme mol·L−1

EA Lumped enzyme-bound state
v Experimentally accessible net rate for a process, such as a single-step reaction or

a multistep enzymatically catalyzed process
mol·L−1·s−1

n Number of steps in a process; for the case of a simple enzymatic reaction including
a lumped enzyme-bound state, n = 2

v+1, v+2, . . . , v+n Individual forward rates in a process consisting of n steps mol·L−1·s−1

v–1, v–2, . . . , v–n Individual back rates in a process consisting of n steps mol·L−1·s−1

v•+1, v
•
+2, . . . , v

•
+n Individual forward rates for substrate label (•) in a process consisting of n steps mol·L−1·s−1

v*+1, v*+2, . . . , v*+n Individual forward rates for product label (*) in a process consisting of n steps;
because dilution of product label (*) in substrate pool is large at an initial stage
of a labeling experiment, v*+1 ∼ 0

mol·L−1·s−1

v*–1, v*–2, . . . , v*–n Individual back rates for product label (*) in a process consisting of n steps mol·L−1·s−1

v•–1, v
•
–2, . . . , v

•
–n Individual back rates for unlabeled substrate (•) in a process consisting of n steps;

because dilution of unlabeled product (•) in product pool is large at an initial stage
of a labeling experiment, v•–n ∼ 0

mol·L−1·s−1

f+ Corresponds to v•+n: experimentally accessible flux of substrate arriving
in product pool (increase in P•)

mol·L−1·s−1

f– Corresponds to v*–1: experimentally accessible flux of substrate arriving
in substrate pool (increase in A*)

mol·L−1·s−1

k+1 Rate constant in enzymatically catalyzed reaction for conversion of
substrate (A) to enzyme-bound state (EA)

(mol·L−1)−1·s−1

k–1 Rate constant in enzymatically catalyzed reaction for conversion of
enzyme-bound state (EA) to substrate (A)

s−1

k+2 Rate constant in enzymatically catalyzed reaction for conversion of
enzyme-bound state (EA) to product (P)

s−1

k–2 Rate constant in enzymatically catalyzed reaction for conversion of
product (P) to enzyme-bound state (EA)

(mol·L−1)−1·s−1
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