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The colonization of wheat roots by Azospirillum brasilense was used as a model system to evaluate the utility
of whole-cell hybridization with fluorescently labeled, rRNA-targeted oligonucleotide probes for the in situ
monitoring of rhizosphere microbial communities. Root samples of agar- or soil-grown 10- and 30-day-old
wheat seedlings inoculated with different strains of A. brasilense were hybridized with a species-specific probe
for A. brasilense, a probe hybridizing to alpha subclass proteobacteria, and a probe specific for the domain
Bacteria to identify and localize the target bacteria. After hybridization, about 10 to 25% of the rhizosphere
bacteria as visualized with 4*,6-diamidino-2-phenylindole (DAPI) gave sufficient fluorescence signals to be
detected with rRNA-targeted probes. Scanning confocal laser microscopy was used to overcome disturbing
effects arising from autofluorescence of the object or narrow depth of focus in thick specimens. This technique
also allowed high-resolution analysis of the spatial distribution of bacteria in the rhizosphere. Occurrence of
cells of A. brasilense Sp7 and Wa3 was restricted to the rhizosphere soil, mainly to the root hair zone. C-forms
of A. brasilense were demonstrated to be physiologically active forms in the rhizosphere. Strain Sp245 also was
found repeatedly at high density in the interior of root hair cells. In general, the combination of fluorescently
labeled oligonucleotide probes and scanning confocal laser microscopy provided a very suitable strategy for
detailed studies of rhizosphere microbial ecology.

The rhizosphere is a habitat of extraordinary significance for
biocoenosis in soils. Root exudates provide large amounts of
easily degradable organic carbon sources which attract and
support an abundant and highly active rhizosphere microflora
(11). The rhizosphere exhibits plant-microorganism symbioses
of crucial importance, e.g., the nodules induced by rhizobia in
leguminous plants (56) and the mycorrhizae (1, 9). It plays a
key role in the nutrition and health of plants. Rhizosphere
populations and their physiological activities therefore contrib-
ute considerably to primary production in terrestrial ecosys-
tems.
In addition to the true symbiotic plant-microorganism sys-

tems, a large variety of plant-associated soil bacteria with less
intimate associations are able to enhance the growth of a wide
range of economically important crops. This taxonomically di-
verse group is called plant growth-promoting rhizobacteria
(24). Azospirillum is a genus of versatile plant growth-promot-
ing rhizobacteria which colonizes the rhizosphere mainly of
cereals in tropical and subtropical regions (34, 37). Their po-
tentially plant-beneficial abilities include nitrogen fixation (48),
nitrate reduction (19), and phytohormone production (18, 29).
These plant growth-promoting capabilities led to growth stim-
ulation in field experiments when proper inoculation tech-
niques were used (35). However, failures and a lack of repro-

ducibility have been reported (7). Therefore, more basic
biological knowledge is needed to understand the rhizosphere
interaction and colonization by Azospirillum species before a
selection of strains that perform well under field conditions can
be obtained (25).
For such a purpose, traditional microbial methods do not

provide appropriate tools. Isolation of microorganisms from
natural samples and cultivation do not allow an exact localiza-
tion and often detect only a minor portion of naturally occur-
ring microorganisms (50, 55). Traditional methods selectively
alter the apparent contribution of one particular group to the
whole community (53). Microscopic examination with classical
stains, e.g., 49,6-diamidino-2-phenylindole (DAPI) (38), or the
use of enzymatic color-producing reactions, e.g., the reduction
of 2,3,5-triphenyltetrazolium chloride (36), reveals the organ-
isms in their natural habitat. However, the taxonomic affilia-
tion of the observed bacterial cells is often uncertain. More
recently, fluorescence-labeled probes such as antibodies (8)
and rRNA-targeted oligonucleotides (3) have been introduced
as tools in microbial ecology. These probes allow an in situ
identification of bacteria, even if the bacteria had not been
cultured before (4). Hybridization with fluorescently labeled
rRNA-targeted probes has been performed to investigate mi-
croorganisms in aquatic ecosystems (20, 32), biofilms (5, 39,
40), and sediments (13, 47). However, experience with this
technique in the soil habitat is limited at the moment (16). One
reason for this is the low physiological activity of many soil
microorganisms. Cells may have entered a quiescent state (31)
which results in a low ribosome content (43). The amount of
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rRNA is directly correlated to the fluorescence conferred by
rRNA-targeted probes (12), and hence a low physiological
activity may result in a weak or even undetectable hybridiza-
tion signal. The second challenge when investigating soil- or
plant-associated microorganisms with fluorescent probes is the
severe autofluorescence of plant material and mineral particles
(16, 17). Furthermore, an exact localization of the bacteria in
thick samples remains difficult because of problems with lim-
ited depth of focus.
Scanning confocal laser microscopy (SCLM) should circum-

vent the last two problems. In this technique, which has been
reviewed recently (46, 49), the specimen is scanned with a
focused laser beam and the fluorescent signals are detected by
a photomultiplier. A confocal pinhole allows only signals aris-
ing from the focused plane to be detected. With SCLM, non-
destructive optical sections of a sample are obtained and dis-
turbing effects from out-of-focus fluorescence are reduced
(57). SCLM has already been used in microbial ecology to
study the spatial structure of microbial biofilms (10, 28, 58) and
recently was combined with the use of fluorescent antibodies
(44) or oligonucleotide probes (14, 52, 54). In this work, we
used the root colonization of monoxenic and soil-grown wheat
seedlings by Azospirillum brasilense as a model system for the in
situ monitoring of rhizosphere bacteria with fluorescently la-
beled rRNA probes and SCLM.

MATERIALS AND METHODS

Bacterial strains and media. A. brasilense Sp7 was obtained from the German
Collection of Microorganisms, Brunswick, Germany. Strains Sp245 and Wa3
were kindly provided by J. Döbereiner, EMBRAPA, Rio de Janeiro, Brazil, and
C. Christiansen-Weniger, Wageningen, The Netherlands, respectively. The bac-
teria were grown at 308C in minimal medium containing (in grams per liter)
KH2PO4, 0.15; K2HPO4, 0.2; MgSO4 z 7H2O, 0.25; CaCl2 z 2H2O, 0.15; and so-
dium succinate, 5.0. For solid medium, 0.5 g of NH4Cl per liter and 12 g of agar
per liter were added. Trace element and ferric iron solutions were prepared by
the method used for Nfb medium (27), and 1 ml was added to the medium after
autoclaving. The final pH was adjusted to 6.8.
Inoculation and growth of wheat seedlings. Seeds of wheat cultivar PF839197

provided by J. I. Baldani, EMBRAPA, were germinated for 2 days on moistened
paper at room temperature and then transferred to tubes filled with approxi-
mately 40 g of unsterilized soil (sandy loam; 44% sand, 38% silt, 18% clay, 1.12%
total organic carbon). The tubes were drained to ensure unsaturated conditions.
At the time of planting, inoculation was performed: A. brasilense cells were
harvested at mid-logarithmic growth phase and washed in sterile phosphate-
buffered saline (PBS; pH 7.2), and approximately 108 cells were added to each
tube. The seedlings were grown in a greenhouse at 288C and moistened every 3
days with 5 ml of distilled water.
Monoxenic cultures were grown in agar tubes containing medium as described

above, except that succinate and NH41 were omitted and only 8 g of agar per
liter was used. The medium was autoclaved in the tubes and kept at 428C.
Approximately 108 washed cells from an overnight culture of the desired strain
were added. The tube was gently shaken and put on ice. After the agar had
solidified, a sterilized germinated wheat seed was placed on the surface with
sterile forceps. The tubes were sealed with sterile cotton. The grains were
sterilized as follows (6): seeds were treated with 95% ethanol for 1 min and then
with acidified hypochlorite (solution A [5% NaOCl in water], 20 ml; solution B
[1 M KH2PO4, 160 ml; concentrated HCl, 40 ml; sterile water, 50 ml], 4 ml;
solution C [Tween 80, 1%, vol/vol], 2 ml; sterile water, 174 ml) for 5 min. The
seeds were washed four times for 1 min in sterile water and then immersed in
sterile water for 4 h. Treatment with acidified hypochlorite and the washing steps
were repeated, and the seeds were kept in 30% hydrogen peroxide for 5 min,
washed again four times with sterile water, and immersed for a further 1 h in
sterile water. Then the seeds were germinated on Luria broth agar plates in the
dark at room temperature for 2 days. Only seeds from plates on which no
contaminating microorganisms were observed were chosen. This procedure pre-
vented growth of contaminants in most cases. However, it could not always
prevent the occurrence of yeasts and slender spore-forming rods.
Monoxenic cultures were also performed in tubes containing sterile quartz

sand (average grain size, 0.8 mm) and liquid medium as described above but
without addition of succinate.
Preparation of samples and slides. After 10 and 30 days, seedlings were

carefully removed from the tubes and the roots were washed by shaking in sterile
PBS. Standard fixation and dehydration procedures (3) were slightly modified, as
follows. Root pieces 15 to 25 mm in length from all parts of the root system were

transferred to fixation buffer (4% paraformaldehyde in PBS) and fixed for 2 h at
288C. Samples were washed and dehydrated in 50, 80, and 96% ethanol (5 min
each) and then immobilized on gelatin-coated slides (3) with a droplet of 0.25%
agarose on both ends. After being dried, slides could be stored at room temper-
ature for several months.
Probes. The following oligonucleotide probes were used: (i) EUB338, com-

plementary to a region of the 16S rRNA specific for the domain Bacteria (2);
EUK1379, complementary to a region of the 18S rRNA of the domain Eucarya
(20); (iii) ALF1b, complementary to a region in the 16S rRNA conserved in the
alpha subclass of Proteobacteria and a few other bacteria (33); and (iv) AB,
complementary to a region of the 23S rRNA of A. brasilense (23).
Oligonucleotide probes were synthesized with a C6-TFA amino-linker [6-(tri-

fluoroacetylamino)hexyl(2-cyanoethyl)-(N,N-diisopropyl)phosphoramidite] at
the 59 end (MWG Biotech, Ebersberg, Germany), labeled with tetramethylrho-
damine-5-isothiocyanate (TRITC; Molecular Probes, Eugene, Oreg.), and puri-
fied as described by Amann et al. (3) or purchased already coupled with 5(6)-
carboxyfluorescein-N-hydroxysuccinimide ester and purified by high-pressure
liquid chromatography (FLUOS; MWG Biotech). In the latter case, the purifi-
cation procedure (3) started with the separation of labeled and unlabeled oligo-
nucleotides in a polyacrylamide gel. The probes were finally dissolved in TE
buffer (10 mM Tris hydrochloride [pH 7.2], 1 mM EDTA) to a final concentra-
tion of 50 mg ml21 and stored at 2208C.
The DNA-specific dye DAPI (Sigma) was stored in a 0.35-mg ml21 aqueous

stock solution at 48C.
In situ hybridization. The hybridization procedure followed in principle the

method published by Manz et al. (33). The root pieces were immersed in 15 ml
of hybridization buffer (0.9 M NaCl, 20 mM Tris hydrochloride [pH 7.2], 0.01%
sodium dodecyl sulfate [SDS], 5 mM EDTA). The buffer contained 20% form-
amide if probe ALF1b was used. Then 2 ml of probe solution was added. The
slides were incubated for 2 h at 468C in an equilibrated humidity chamber. The
probes were removed with 5 ml of washing solution (20 mM Tris, 0.01% SDS, 5
mM EDTA, 0.9 M NaCl [180 mM NaCl when probe ALF1b was used]), and the
slides were immersed in 50 ml of washing solution at 488C for 20 min. The slides
were then rinsed with distilled water and allowed to air dry. If counterstaining
with DAPI was desired (38), the stock solution was diluted 500-fold in distilled
water and 20 ml of the working solution was applied to each root piece. After
incubation for 10 min at room temperature, the slides were rinsed with distilled
water, air dried, and mounted in antifading solution (22).
Epifluorescence microscopy was performed with an Axioplan microscope

(Zeiss, Oberkochen, Germany) equipped with filter sets 01, 09, and 15. Color
micrographs were taken on Kodak Ektachrome P1600 color reversal film. Ex-
posure times were 0.03 s for phase-contrast micrographs and 4 to 45 s for
epifluorescence micrographs.
SCLM. An LSM 410 inverted scanning confocal laser microscope (Zeiss)

equipped with three lasers (Ar ion, UV; Ar ion, visible; and HeNe, supplying
excitation wavelengths at 365, 488, and 543 nm, respectively) was used to record
optical sections. A 1003 oil immersion lens (NA 1.3) was used. Monochrome
sequences of images were taken along the optical axis (z axis) with increments
between 0.7 and 1.2 mm. For sagittal images (z scans), z increments of 0.15 mm
were chosen. Artificial-color images were rearranged from sequentially recorded
monochrome images or projections of z sequences. Red-green anaglyphs were
calculated from monochrome sequences. Colored three-dimensional reconstruc-
tions from polyfluorescent image sequences were obtained by first calculating
monochrome stereo pairs and then combining the results within a true-color
red-green-blue display (rgb display). All image combining, processing, and anal-
ysis was performed with the standard software package provided by Zeiss.
Preliminary experiments were made with an MRC 600 scanning confocal laser

microscope (Bio-Rad Microscience, Toronto, Ontario, Canada) equipped with
an Ar ion laser (excitation wavelength, 488 nm).

RESULTS

General remarks. The fluorescent signal of the hybridized
bacteria allowed detection of azospirilla on root samples from
agar-, quartz sand-, or soil-grown wheat seedlings. Unstained
bacterial cells in control experiments exhibited only a very
weak autofluorescence within the excitation wavelengths used.
This background was not increased by hybridization experi-
ments with the eucaryotic probe EUK1379. This assay ensured
that no nonspecific adsorption of oligonucleotides, e.g., on cell
wall components, occurred.
Staining A. brasilense cells with the species-specific AB

probe resulted in only a mediocre signal. The fluorescence
intensity was high enough for detection in pure cultures and on
root samples from monoxenic agar-grown seedlings. However,
when the probe was applied to azospirilla colonizing roots of
plants grown in soil microcosms or monoxenically in quartz
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sand-filled tubes, the hybridization signal was too low for doc-
umentation, although the same cells bound readily detectable
amounts of probes ALF1b or EUB338. Signal quantification by
SCLM on pure cultures of A. brasilense Sp7 and Sp245 re-
vealed that the signal intensity of probe AB was approximately
40% of that of probe EUB338 and 50% of that of probe
ALF1b.
Comparison between epifluorescence and scanning laser

microscopy. The root material exhibited strong autofluores-
cence regardless of the excitation wavelengths used. This back-
ground was further increased during the fixation and dehydra-
tion procedure. Also, clay and organic particles which became
suspended in the mounting solution severely hampered con-
ventional epifluorescence microscopy. Therefore, studies were
restricted to a minor part of the root hair zone. Bacteria col-
onizing the surface of the main root could rarely be detected.
Furthermore, the viewing and the documentation of thick hy-
bridized samples (usual thickness range, 0.5 to 1 mm) were
severely limited by ‘‘out-of-focus blur,’’ and the exact localiza-
tion of bacteria was doubtful in many cases.
In contrast, these problems could be largely overcome if

SCLM was used. The images obtained included only signals
from focused planes. Projections of z sequences resulted in
reconstructions of the whole scanned part of the specimen in
focus. The significantly decreased background signal and fur-
ther contrast enhancement procedures lead to a considerable
improvement in image quality (Fig. 1 and 2). In addition,
colors could be assigned to the original images collected at
various excitation wavelengths, and when these images were
combined in an rgb display, the results of double or even triple
labeling could be viewed in a single image (see Fig. 3).
The spatial arrangement of a scanned sample was confirmed

by z scans (see Fig. 3C), which, for example, could distinguish
between bacteria colonizing the interior of a root hair cell and
those enveloped only by the crumpled cell wall of a collapsed
root hair. For direct visualization of the three-dimensional

information, anaglyphs from monochrome z sequences which
could be viewed with red-green glasses or colored stereo pairs
from double- or triple-stained samples were calculated (see
Fig. 4).
Colonization patterns and occurrence of C-forms. A.

brasilense cells appeared throughout the root samples of wheat
seedlings grown monoxenically in agar tubes. The bacteria
colonized root hairs as well as primary and secondary root
surfaces (Fig. 2) but were most abundant in the root hair zone.
In roots from 10-day-old seedlings, they appeared mainly as
microcolonies, whereas in samples from 30-day-old plants, they
formed dense layers and clumps (Fig. 1). The same coloniza-
tion patterns occurred on monoxenic plants in quartz sand and
in nonsterile soil microcosms (Fig. 2), where the azospirilla
were stained with the group-specific probe ALF1b. Root sam-
ples from soil were also colonized by various other bacteria and
occasionally fungal hyphae. About 10 to 25% of the DAPI-
stained cells also gave a signal with the bacterial consensus
probe. Within the latter, azospirilla were recognized by hybrid-
ization with probe ALF1b in combination with typical mor-
phology and growth in cell clumps. Even after inoculation,
azospirilla constituted only a small proportion of the rhizo-
sphere bacterial community.
In the rhizosphere of plants grown in quartz sand and occa-

sionally also of those grown in agar, cell clumps were observed
which consisted to a remarkable degree of enlarged cyst-like
cells specifically hybridizing with probes ALF1b or AB, respec-
tively (Fig. 3A). Interestingly, these cells exhibited the same
signal strength as the normal ovoid to rod-shaped bacteria,
which indicates high physiological activity. When wheat seed-
lings had been inoculated with A. brasilense Sp245, specifically
stained cells were repeatedly found at high density in the in-
teriors of noncollapsed root hairs (Fig. 3B and C). The cell
walls of these root hairs were not obviously disrupted. This
phenomenon was not observed in every sample, but when it
was detected, up to one-third of the root hairs were affected.

FIG. 1. Cell clump of A. brasilense Sp7 in the root hair zone of an agar-grown wheat seedling. Bacteria were hybridized with TRITC-labeled probe AB. (A)
Epifluorescence micrograph. (B) Confocal image of the same site, showing a projection of a z sequence (7 mm). The excitation wavelength was 543 nm. Bar, 15 mm.
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The highest densities of bacteria were always in the tip of the
invaded root hairs. In root samples from the soil microcosms,
bacteria not hybridizing to probe ALF1b also were found in
root hairs. ALF1b-stained bacteria showed up inside root hair
cells only if the seedling had been inoculated with strain Sp245.
No bacteria could be detected inside cortex or xylem cells of
the root cylinder. Cells of strains Sp245 and Wa3, however,
could be seen below the outer cortex cells in intercellular
spaces of inoculated plants (data not shown).

DISCUSSION

SCLM enabled us to achieve greater insight into the spatial
distribution of introduced and naturally occurring bacteria in
the rhizosphere of wheat seedlings. The image quality was
significantly improved by reducing background fluorescence
via single-spot excitation. In addition, optical sections com-
pletely in focus are produced and can be combined into a
multicolor extended-focus image. With SCLM and the com-
monly included software, three-dimensional information is ob-
tained and can be visualized in a convenient way, e.g. by red-
green anaglyphs or colored stereo image pairs. SCLM is
therefore an important tool, especially in combination with
specific molecular and serological probes, for in situ studies in
microbial ecology.
A prerequisite for the successful use of rRNA-targeted

probes for the detection of microorganisms is the presence of
a sufficiently large number of ribosomes in the target cells. The
results obtained clearly demonstrated that the ribosome con-
tent of a significant part of the rhizosphere microorganisms
was high enough to render them detectable by in situ hybrid-
ization with fluorescent oligonucleotide probes. This is in con-
trast to the situation in bulk soil, where without nutrient ad-
dition only a very small fraction of the DAPI-stained cells
could be detected (16). It also became evident that the en-
larged cyst-like forms of A. brasilense that have been repeatedly

reported to occur in the rhizosphere of colonized plant roots
(37) contain ample ribosomes and consequently are physiolog-
ically active cells and not dormant forms. Previously, this was
shown only in liquid cultures, where cyst-like forms of A.
brasilense, which can be obtained by specific cultivation condi-
tions (42), exhibited some nitrate reductase activity (51). Cyst-
like forms appeared mainly in the rhizosphere of sand-grown
plants. The large pore volume in sand-filled microcosms may
have allowed increased oxygen access to the bacteria compared
with the situation in agar or soil. Thus, oxygen protection of
nitrogenase might be the primary function of the cell envelope
of these cyst-like forms.
The less intense fluorescence conferred by the A. brasilense-

specific probe AB compared with probes EUB338 and ALF1b
may be due to a higher-order structure in the fixed ribosomes
partially covering the target site of the 23S rRNA in situ. The
search for other suitable target sequences which may be more
readily accessible should resolve this problem. With the group-
specific probe ALF1b, the colonization behavior of azospirilla
could be monitored successfully. We confirmed that strain
Sp245 enters the interior of root hair cells which had appar-
ently intact cell walls. The ability of this strain to penetrate root
cell walls had been suggested for many years because of the
original isolation from surface-sterilized roots (37), and it was
recently shown by detection with monoclonal antibodies in
ultrathin sections of the root cylinder (45). In this study, we
could not detect specifically stained cells of A. brasilense Sp245
within cells of the root cylinder. This could be due to a limited
accessibility of the cell lumen of the vascular system by the
probes rather than to a lack of invasive potential of this strain.
To demonstrate internal colonization in the xylem, an im-
provement of sample processing, e.g., by enzymatic plant cell
wall digestion, will be necessary.
It is not known whether the invasion of root hair cells by A.

brasilense Sp245 is the initial step in the colonization of root
cortex and xylem cells analogous to root nodulation by rhizobia

FIG. 2. Root hair of a soil-grown wheat seedling (A) and root surface of a quartz sand-grown wheat seedling (B) colonized by A. brasilense Sp245. Bacteria were
hybridized with TRITC-labeled probe ALF1b. The excitation wavelength was 543 nm. Bars, 20 mm (A) and 10 mm (B).
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FIG. 3. (A) Tight cell clump of A. brasilense Sp245 adhering to a bundle of root hairs of a quartz sand-grown wheat seedling. Staining was carried out with
TRITC-labeled probe ALF1b. Excitation wavelengths were 543 and 488 nm for red and green fluorescence, respectively. Projection of z sequences (28 mm) is displayed
as an rgb image. Bar, 15 mm. Note the enlarged cyst-like cell forms (arrow). (B and C) Root hair zone of a soil-grown wheat seedling, colonized by various bacteria
including A. brasilense Sp 245 growing internally in a root hair (arrow). Staining was carried out with TRITC-labeled probe ALF1b, FLUOS-labeled probe EUB338,
and DAPI. Excitation wavelengths were 543, 488, and 365 nm for red, green, and blue fluorescence, respectively. Signals are displayed as rgb images. Bar, 15 mm (bar
applies to panels B and C). (B) xy scan. (C) z-scan; depth, 15 mm. The yellow line in panel B indicates the approximate orientation of the z scan.

FIG. 4. Root hair zone of a soil-grown wheat seedling including a colony of A. brasilense Sp245. Staining and excitation were as described for Fig. 3B and C. A
three-dimensional reconstruction of a projection of z sequences (12 mm) is displayed as a colored stereo pair. Bars, 15 mm.
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or whether A. brasilense organisms enter the vascular system
through lesions. Probably, the invasive potential of a plant
growth-promoting rhizobacterium is of key importance be-
cause the organism escapes competition among rhizosphere
bacteria and achieves close contact with the host. Coloniza-
tion of the root interior has been reported for a number of
diazotrophic plant growth-promoting rhizobacterium genera,
including Azospirillum, Herbaspirillum, Acetobacter (15), Azo-
arcus (41), and Alcaligenes (59). Colonization of the endorhi-
zosphere was previously monitored by using either polyclonal
antisera (30, 41) or activity of reporter genes in genetically
engineered derivatives of the investigated strain (21, 26),
mostly in monoxenic plant cultures and on thin sections, which
may have damaged the viewed plant cells. There are few ex-
amples of monitoring a naturally grown endophytic microor-
ganism via whole-cell hybridization with rRNA-directed
probes; one involves squashed nodules of Alnus spp. colonized
by Frankia spp. (17). Our study demonstrates that the combi-
nation of rRNA-directed oligonucleotide probes and SCLM
now enables in situ investigations of specifically stained rhi-
zobacteria from soil-grown plants by using relatively undis-
turbed samples. This strategy was introduced very recently for
the specific localization of bacteria in marine bivalves (14) and
in activated-sludge flocs (52, 54) and has now been extended to
the rhizosphere habitat. Investigations of bacteria in their spe-
cific microniches in a wide range of habitats should be possible
by this technique.
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1991. Identification in situ and phylogeny of uncultured bacterial endosym-
bionts. Nature (London) 351:161–164.

5. Amann, R. I., J. Stromley, R. Devereux, R. Key, and D. A. Stahl. 1992.
Molecular and microscopic identification of sulfate-reducing bacteria in mul-
tispecies biofilms. Appl. Environ. Microbiol. 58:614–623.

6. Baldani, J. I. (EMBRAPA, Rio de Janeiro, Brazil). 1992. Personal commu-
nication.

7. Bashan, Y., and H. Levanony. 1990. Current status of Azospirillum inocula-
tion technology: Azospirillum as a challenge for agriculture. Can. J. Micro-
biol. 36:591–608.

8. Bohlool, B. B., and E. L. Schmidt. 1980. The immunofluorescence approach
in microbial ecology. Adv. Microb. Ecol. 4:203–241.

9. Bowen, G. D. 1994. The ecology of ectomycorrhiza formation and function-
ing. Plant Soil 159:61–67.

10. Caldwell, D. E., D. R. Korber, and J. R. Lawrence. 1992. Confocal laser
microscopy and digital image analysis in microbial ecology. Adv. Microb.
Ecol. 12:1–67.

11. Campbell, R., and M. P. Greaves. 1990. Anatomy and community structure
of the rhizosphere, p. 11–34. In J. Lynch (ed.), The rhizosphere. John Wiley
& Sons, Inc., New York.

12. DeLong, E. F., G. S. Wickham, and N. R. Pace. 1989. Phylogenetic stains:
ribosomal RNA-based probes for the identification of single cells. Science
243:1360–1363.

13. DiChristina, T. J., and E. F. DeLong. 1993. Design and application of

rRNA-targeted oligonucleotide probes for the dissimilatory iron- and man-
ganese-reducing bacterium Shewanella putrefaciens. Appl. Environ. Micro-
biol. 59:4152–4160.

14. Distel, D. L., and C. M. Cavanaugh. 1994. Independent phylogenetic origins
of methanotrophic and chemolithoautotrophic bacterial endosymbioses in
marine bivalves. J. Bacteriol. 176:1932–1938.
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40. Ramsing, N. B., M. Kühl, and B. B. Jörgensen. 1993. Distribution of sulfate-
reducing bacteria, O2 and H2S in photosynthetic biofilms determined by

1018 ASSMUS ET AL. APPL. ENVIRON. MICROBIOL.



oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol. 59:
3840–3849.

41. Reinhold, B., T. Hurek, and I. Fendrik. 1987. Cross-reaction of predominant
nitrogen-fixing bacteria with enveloped, round bodies in the root interior of
Kallar grass. Appl. Environ. Microbiol. 53:889–891.

42. Sadasivan, L., and C. A. Neyra. 1985. Flocculation in Azospirillum brasilense
and A. lipoferum: exopolysaccharides and cyst formation. J. Bacteriol. 163:
716–723.

43. Schaechter, M. O., O. Maaloe, and N. O. Kjeldgaard. 1958. Dependency on
medium and temperature of cell size and chemical composition during bal-
anced growth of Salmonella typhimurium. J. Gen. Microbiol. 19:592–606.

44. Schloter, M., R. Borlinghaus, W. Bode, and A. Hartmann. 1993. Direct
identification, and localization of Azospirillum in the rhizosphere of wheat
using fluorescence-labelled monoclonal antibodies and confocal scanning
laser microscopy. J. Microsc. 171:173–177.

45. Schloter, M., G. Kirchhof, U. Heinzmann, J. Döbereiner, and A. Hartmann.
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