Page path:

Superresolution Microscopy

Superresolution microscopy allows us to visualize microstructures below the diffraction limit. 

The techniques Su­per­res­olu­tion Struc­tured Il­lu­min­a­tion (SR-SIM) and Pho­to­activ­ated Loc­al­iz­a­tion Mi­cro­scopy (PALM) are combined with our con­focal laser scan­ning mi­cro­scope. more ...

Our latest superresolution instrument is based on the Stimulated Emission Depletion (STED)[1] technique.

The Abberior Instruments easy3D STED can provide a lateral resolution below 25 nm and a 3D resolution of up to 60 nm.

The instrument includes the methodes pulsed-STED[2], gated-STED[3],[4], and RESCue STED[5]. It is the first STED microscope with MINFIELD[6] technique on the commercial market.

© A. Ellrott / MPI MM

Technical features

Excitation laserSTED laserDetection*
405 nm (cw, 50 mW)

 450/50 nm

440 nm (pulsed, 500 µW)
  595 nm
(pulsed, 1 W)

 509/22 nm

485 nm (pulsed, 1 mW)

 525/50 nm or

  518 nm (pulsed, 300 µW)  

 545/24 nm

561 nm (pulsed, 300 µW)
  775 nm
(pulsed, 3 W)
 605/50 nm or
   615/20 nm
640 nm (pulsed, 1 mW)
 685/70 nm

 *single-photon-counting avalanche photodiode (apd module)



Reservation STED


Room 2242, Phone 931


Andreas Ellrott


1. Hell, S.W., J. Wichmann. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Optics Letters. 19: 780–82. (doi:10.1364/OL.19.000780).
 2. Dyba, M., S. W. Hell. (2003). Photostability of a Fluorescent Marker Under Pulsed Excited-State Depletion through Stimulated Emission. Applied Optics. 42:5123–29.  (doi:10.1364/AO.42.005123). 
 3. Vicidomini, G., G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S.W. Hell. (2011). Sharper low-power STED nanoscopy by time gating. Nat. Meth. 8:571–3. (doi:10.1038/nmeth.1624). 
 4. Moffitt, J.R., C. Osseforth, and J. Michaelis. (2011). Time-gating improves the spatial resolution of STED microscopy. Opt. Express. 19:4242–54. (doi:10.1364/OE.19.004242). 
 5. Staudt, T., A. Engler, E. Rittweger, B. Harke, J. Engelhardt, S.W. Hell, (2011). Far-field optical nanoscopy with reduced number of state transition cycles. Opt. Express. 19:5644–57. (doi:10.1364/OE.19.005644). 
6. Göttfert, F., T. Pleiner, J. Heine, V. Westphal, D. Görlich, S.J. Sahl, S.W. Hell. (2017). Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent. Proc. Natl. Acad. Sci. USA. 114:2125-30. (doi:10.1073/pnas.1621495114).



Back to Top